
Journal of Statistical Physics, Vol. 45, Nos. 1/2, 1986 

On the Statistical Mechanics of the 
Traveling Salesman Problem 

G. Baskaran, ~ Yaotian Fu, 2 and P. W. Anderson ~ 

Received February 17, 1986 

We consider the statistical mechanics of the traveling salesman problem (TSP) 
and develop some representations to study it. In one representation the mean 
field theory has a simple form and brings out some of the essential features of 
the problem. It shows that the system has spontaneous symmetry breaking at 
any nonzero temperature. In general the phase progressively changes as one 
decreases the temperature. At low temperatures the mean field theory solution is 
very sensitive to any small perturbations, due to the divergence of some local 
susceptibilities. This critical region extends down to zero temperature. We per- 
form the quenched average for a nonmetric TSP in the second representation 
and the resulting problem is more complicated than the infinite-range spin-glass 
problem, suggesting that the free energy landscape may be more complex. The 
role played by "frustration" in this problem appears explicitly through the 
localization property of a random matrix, which resembles the tight binding 
matrix of an electron in a random lattice. 

KEY WORDS: spin glass, N-P complete optimization problems. 

1. I N T R O D U C T I O N  

It has been realized recently that several complex optimization 
problems~l 7) can be studied with the aid of concepts and tools developed 
in the statistical mechanics of disordered systems (see, e.g., Refs. 3 and 8). 
One such problem is the minimization of the tour distance of a traveling 
salesman ~9) who wants to visit N arbitrarily located cities. Problems of 
similar nature ~1~ occur in the design of very large-scale integrated circuits 
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and in many other applications. The TSP is known to be an NP-complete 
problemg--it might take an exponentially long time to find the optimal 
tour with any algorithm. If we imagine a space of all possible tours and 
draw the "tour distance" surface, we will obtain a surface with complicated 
maxima-minima structures. This surface is similar to the free energy sur- 
face in a spin-glass problem. As we go down in this surface to regions 
corresponding to smaller and smaller tour distance, there will in general be 
many local minima separated by huge barriers. It is this similarity between 
the optimization problem and the problem of the spin-glass that has 
prompted the development of heuristic algorithms such as the simulated 
annealing technique. (1/ Recently it has also been suggested that the spin- 
glass theory may play an important role in general theoretical studies of 
optimization problems. (2'7) 

In this paper first we discuss qualitatively the form of the equilibrium 
free energy at various temperature regions. Then we provide two represen- 
tations which are useful in the statistical mechanical study of the TSP. (4) 
Each one has its own advantage. One of the representations is amenable to 
a simple mean field theory treatment without performing any quenched 
average. It gives us a picture similar to Anderson's localization theory of 
spin-glasses. (11) However, as we shall see, there are important differences, 
The system has a spontaneous symmetry breaking at any finite tem- 
perature. There is a progressive change in the nature of the phase or the 
mean field as one decreases the temperature. Below a particular tem- 
perature, the system enters into a "critical region." In this temperature 
region the form of the mean field theory solution is very sensitive to small 
perturbations, due to the divergence of some "local susceptibilities." Con- 
sequently there is a successive and discontinuous change in the nature of 
the optimal tours in this temperature region as a function of temperature. 
At every temperature, the optimal tours are unstable to local modification 
of the tours. The role played by "frustration" in this optimization problem 
appears in a natural way through a specific property of the eigenvalue spec- 
trum of a tight binding-like random matrix. The second representation, 
which is discussed in detail in the Appendix, involves the permutation 
group and brings out the complexities of the present problem in com- 
parison with the spin-glass problem. These discussions are useful, both for 
a good understanding of the nature of the TSP and for a general study of 
the application of statistical mechanics to optimization problems, from 
which both fields will imensely benefit. 

3 For a general discussion of the relevance of the statistical mechanical study of NP-complete 
problems see, e.g., Ref. 1. 
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1.1. The Trave l ing  Sa lesman Prob lem 

The (generalized) TSP is defined in the following way. Suppose there 
are N points (cities) located at points Ri, i =  1, 2 ..... N, in a d-dimensional 
space. A traveling salesman has to visit all of them and return to the 
starting point at the end of the tour. Taking into account the two traversals 
(in opposite directions) of each tour and the arbitrariness of the starting 
city, there are ( N - 1 ) ! / 2  distinct tours. We label the tours by t. One is 
asked to find the shortest tour(s) (the optimal one) among them. Let Lt be 
the length of a tour t. We define a partition function 

Z= ~ exp(-flL,) (1.1) 
t 

where /~ is a parameter to be called the inverse temperature. Formally, in 
the limit/~ --* oo, the partition function should project out the optimal tours 

a n d  - ln Z/fl gives its length. This, however, is not of any practical 
significance. It is not feasible to compute Z for a general set of cities, and 
t]he formalism does not help one in solving specific problems. Instead, we 
are here interested in using (1.1) as a tool to study the general properties of 
the solution of the TSP. Below, we enumerate some of the questions that 
are of interest in thi problem. While we do not attempt to answer all these 
questions in thi paper, the simple mean field equation that we derive and 
its solutions are very helpful in identifying the qualitative features of the 
problem and finding approximate answers to the following questions: 

1. Are there many solutions to a generic TSP? Numerical 
experience, I~'2~ the spin-glass analogy, ~3~ and model calculations ~41 
strongly suggest an affirmative answer. 

2. What is the distribution of L,? What are the properties of the sub- 
optimal solutions? 

3. What are the relations between different solutions? If one can find 
nne solution, how would one go on to find another? How many 
modifications are needed? Do the common features of two 
solutions suggest a good characteristic for the further search for 
optimal solutions? 

4. In the language of simulated annealing, ~1~ when temperature 
decreases, how does the system evolve? How is a good solution 
selected? 

In general we will be interested in finite-temperature as well as zero- 
temperature properties of Z. In fact, the finite-temperature behavior is 
more interesting in that it displays most clearly the evolution and selection 
process of the tours. 
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There are various ways to represent the partition function Eq. (1.1), 
which is a formal sum over all tours. We would like to introduce auxiliary 
variables Si associated either with the cities or with the links connecting 
two cities. We will call them "spin" variables. The various possible spin 
configurations should generate various allowed tours. The length of a tour 
t, L t =" E { S i } ,  is a function of the spin variables, which will be called the 
cost function or energy function. The partition function is 

Z = ~ exp( - ilL,) = Tr exp( - /~E{ S,}) (1.2) 
l 

If we can obtain a set of variables Si that achieves the above, we have 
obtained a representation. We provide two representations for the TSP, in 
terms of (1) continuous field variables defined on cities, and (2) per- 
mutation group elements. Various questions raised above can be answered 
in principle by calculating various "spin correlation" functions and a 
proper understanding of the spin problem. 

1.2. Free Energy at Var ious  T e m p e r a t u r e s  

In this section we suggest the form of the equilibrium free energy at 
various temperatures by some qualitative arguments. This to some extent 
clarifies the problem of the anomalously large entropy in TSP. We discuss 
for simplicity the case of metric TSP (TSP in a d-dimensional Euclidean 
space). By definition, the distances between cities in a metric TSP are the 
Euclidean distances obeying triangular inequivalities. In a nonmetric TSP 
the distances between cities are independent random variables. 

The cities are distributed according to some probability distribution 
inside a box of volume L J. Let p and N be the mean density and total num- 
ber of cities, respectively. The mean distance am between two neighboring 
cities is ~ p - 1 / a  Depending on the form of the distribution, there could be 
large fluctuation in the neighboring distance. The total number of allowed 
tours is 

(N--  1)!/2 ~ e u ' n N  (1.3) 

Thus, the high-temperature entropy of TSP is ~ N l n  N. We argue below 
that this anomalously large entropy is in fact suppressed at any finite tem- 
perature by the anomalously large length of the majority of allowed tours. 

A randomly chosen tour from the total number of available tour is 
likely to have a length 

~ N L  = a , , , N  1 + 1/a (1.4) 
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Thus the free energy at very high temperature is 

F ~  a,nN 1 + i / d _  T N  ln N (1.5) 

Because of the large length (internal energy) associated with the most 
probable tours among all the tours, the system will choose the above form 
of free energy only for temperatures above 

T 1 ~ amN1/d/ln N (1.6) 

This temperature tends to infinity in the thermodynamic limit. 
Now we argue that at any finite temperature the entropy of the system 

scales as N. At very low temperatures, the most probable tours are the 
tours close to the optimal ones. These tours have a length ~ a  m. The 
entropy associated with them is ~ N In z, where z is the mean coordination 
number of the cities. This form of the entropy is suggested by the similarity 
of the tours to self-avoiding walks and Hamilton circuits on a lattice. 
Hence the free energy is 

F ~  a m N -  T N  ln z 

Thus, the low-temperature free energy is dominated by energy. The glassy 
behavior is expected at low temperatures because of the availability of a 
large number of optimal tours and the huge barriers separating them. 

At very low temperatures the jump distance scale is set by the mean 
neighboring distance between the cities. At high temperatures, T>p-l /d,  
the jump distance is set by T rather than the mean neighboring distance. 
Thus, we expect that at high temperatures [but far below T1; Eq. (1.6)] 
the free energy has the form 

F ~  N T -  T N l n ( a m  T) ~ (1.7) 

We get the above form of the enetropy since the jump can be to any of the 
cities in a radius of T. The above free energy is dominated by entropy. 

Thus, the system is dominated by internal energy at low temperatures 
and entropy at high temperatures. The temperature separating the above 
two regions is given by 

N T =  N T l n ( a m  T) d 

T c = a m e  ~/d (1.8) 

The system is likely to enter into a glassy phase below this temperature. 
Our analysis in the following sections shows that this need not happen as a 
sharp phase transition. The glassiness starts appearing at temperatures 
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larger than T~ if there is large fluctuation in the nearest neighbor distances 
between the cities. In fact, glassiness may start appearing at temperatures 
below T ~  ~, where ~ is the length scale at which inhomogeneities start 
appearing in the distribution of cities. 

2. A FIELD T H E O R Y  R E P R E S E N T A T I O N  

This representation was motivated by work in polymer physics (12) as 
well as by the recent interesting work of Orlando, Itzykson, and de 
Dominicis (13) (OID), who were interested in the number of Hamilton paths 
on a regular lattice. We found that a similar representation can be 
introduced for the partition function of TSP. Consider the following 
generating function: 

ZI = (2i)-N ~ i " (1 + ie-~"oZiZj)[{z,=o} 

where Zi is a real, continuous auxiliary variable ("spin variable") attached 
to every city, R o. is the distances between two cities i and j, and 

Vo-e-~R'J for iv~ j 
(2.2) 

= 0  i = j  

Each nonvanishing term in the above equation is a Boltzmann factor for a 
particular tour involving every city. However, some of the tours are dis- 
joint. In fact, the above partition function corresponds to a modified 
problem, namely, the Many Traveling Salesmen Problem (MTSP): it is a 
TSP with no restriction on the number of salesmen. This is also a non- 
trivial problem/2) To avoid any disjoint tours and to get the correct par- 
tition function for TSP, we use a well-known trick ~12"~3) to get 

n ~ exp i Z V••i'Xj (2.3) 
i < j  {Zi = 0  } 

where ~i = 0~, ~,..., Z~) is an n-component field. The imaginary unit i is 
introduced in the above equations in order to make some of the forthcom- 
ing Gaussian integrals well defined. We use the identity 

exp ( 2 ~  VoZ;. Zj ) Sexp(--�89 
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to rewritte the above partition function 

Z = lim 1 ~ exp( - �89 ~ Go.*~" dOj ~ 124~ dO0~ 
, ~ o n I e x p ( -  �89 E G~*i'  *j) I-I d*i 

that is, 

(2.4) 

Z=- l im 1 ~exp(-flF[dp])I-[ddpi (2.5) 
n ~ o n j" exp( - �89 • GJoi" qbj) I I  d~i 

where G~=(V 1)~ and the "free energy" F is defined as 

- / ? F [ * ]  = - ~ i E Gij*~ "dOj + E In d0~ (2.6) 

Notice that the temperature appears in an unusual way, via V~, in the par- 
tition function. 

The above expression is for a given configuration of the cities. The 
possibility of a quenched average of this expression will be discussed later. 
V~re can regard the partition function either as a generating functional of a 
nonpolynomial (log ~b) field theory or a statistical mechanical system with 
complex free energy. This nonlinearity is more difficult to handle than ~b 4 
nonlinearity. First, we attempt a simple mean field theory on this model. 
To do this, we need to understand the nature of the eigenvalue spectrum of 
the random matrix V~. 

The matrix V~ is a real, symmetric matrix with zero diagonal elements 
and positive off-diagonal elements. It resembles the tight-binding matrix of 
an electron in a random lattice with zero orbital energy for all sites and 
positive hopping matrix elements between any two sites. The matrix 
element is short-ranged at low temperatures and has a range /?-1 at any 
temperature. Since the diagonal elements are zero, the density p(e) of eigen- 
values satisfies the following equation: 

f ~  p(a)s de-=- 0 (2.7) 
- - c O  

Matrices of this type have been studied by many authors. ~ To begin, 
let us consider a regular lattice of cities.* The density of states is shown 
schematically in Fig. 1. The density of states is asymmetric in general. This 
is due to the presence of "frustration," which is defined in the following 
way. A tigh binding matrix of a simple cubic lattice with only constant 
positive nearest neighbor hoppings has an antibonding eigenfunction at the 
negative end of the tail. That is, the eigenfunction has opposite signs on the 

t The finite temperature statistical mechanics of TSP on a regular lattice is nontrivial. The 
zero temperature version of this corresponds to the Hamilton circuit problem. 
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vo 

Fig. 1. ( ) The density of states of a tight binding matrix with Vq = e [~RV for a periodic 
array of cities; ( . . . .  ) when the positions of the cities are made slightly random. 

two sublattices. This is not possible in a lattice such as fcc or a random lat- 
tice which cannot be separated into two identical sublalttices. The inability 
to form perfect antibonding eigenstates is called frustration in this content. 
This is analogous to the absence of a simple antiferromagnetic ground 
states in an fcc lattice with nearest neighbor Ising antiferromagnetic 
interaction. Notice that even a hypercubic lattice which can be separated 
into two sublattices (bipartite lattice) can have frustration when the hopp- 
ing matrix elements are not limited to nearest neighbors. This in turn is 
analogous to the absence of simple antiferromagntic ground states in a sim- 
ple cubic lattice with a certain type of non-nearest neighbor Ising 
antiferromagnetic interaction. The positive band edge occurs at V0 = Z j  V•. 
The negative band edge is displaced from - V  o to - V  due to the 
frustration. The quantity ( 1 -  V/Vo) is a measure of the frustration. 

Now let us imagine making a simple random configuration of cities by 
displacing the above regular lattice of cities randomly by a finite amount. 
The matrix Vii gets disordered. The density of states develops tails. The 
positive band edge moves beyond V0. The negative band edge moves 
toward - V  o as we increase the bond disorder (dashed curve in Fig. 1). 

A1 high temperatures, the spectrum has a simple form. Let R0 be the 
typical largest distance between any two neighboring cities. Then for 
3 - 1 >  Ro, the zero-momentum state is a good approximation to the real 
eigenstate and the density of states has the form shown in Fig. 2. As the 
temperature increases, the width of the states at the center decreases and 
collapses to the origin from both sides as T ~ oo. However, there are only 
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Fig. 2. 

p(E) 

V o -V I 

The density of states at very low temperature. 

N- -  1 states at the center. The zero-momentum state becomes an eigenstate 
andL its eigenvalue alone remains at a finite value N -  1. 

At very low temperatures, the bandwidth decreases with decreasing 
temperature. The relative variation of the hopping matrix elements 
becomes very large. A typical ratio of the hopping matrix elements between 
pairs of cities 0" and k is 

V o . / V i k  = exp[  - f l (  R o - Rik)] (2.s) 

This ratio becomes exponentially large or small depending on whether R• 
is greater or less than R i k .  Thus, the randomness increases as we go to low 
temperatures and we expct all the eigenstates to be localized. 

3. A M E A N  F IELD T H E O R Y  

Here we discuss a mean field theory in which we obtain a simple pic- 
ture of what could happen as one changes the temperature or increases the 
disorder in the configuration of cities. We are able to infer a good picture 
without doing any detailed calculations. The analysis is in spirit similar to 
the theory of Anderson and co-workers ~11~ for the spin-glass problem. 
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In a mean field theory with complex free energy we look for the saddle 
point of the multidimensional integral Eq. (2.5). Minimizing the free energy 
in Eq. (2.6), we obtain the following simple mean field equation: 

i ~ Gu~b; = 2-~-~ 2' (3.1) 
J 

We will assume that the mean field is pointing in a specific direction at 
every city. In other words, 

•V, mf = (~,mf, 0, 0 ..... 0)  (3.2) 

Therefore, 

i ~  Gij~bj = 2Ab i (3.3) 
J 

For convenience we suppress the indices 1 and mf hereafter. We make the 
mean field equation real by defining 

rh = (i/2)1/20i (3.4) 

Multiplying both sides of Eq. (3.3) by the matrix V, we get 

t/i=~. V__o~jt/j (3.5) 
We do not attempt to solve this mean field equation; the very from of 

this equation suggests several interesting features of TSP. First, the mean 
field has to be nonzero at every site. If there is a decrease in the mean field 
on the site i due to some perturbation, it results in a increase in the man 
field on the rieighboring sites. This is analogous to an antiferromagnetic 
system in which the increase of spin on one site tends to increase the spins 
on neighboring sites in the opposite direction. 

We will analyze how the mean field changes, starting from a known 
mean field, as we change either the temperature or the disorder. We will 
characterize the mean field by a parameter A. Let r h be a known mean field 
at a given temperature/~ and given disorder A. Let there be a change in/3 
or A so that the matrix V 0 changes by a small amount 

V o ~ V o. + 6 V U 

Let the mean field change from tti to t / i+~ .  We will linearize the mean 
field equation and obtain a linear equation satisfied by ~i, 

~" (6ij + ~ ' ]  :j= ~ 6V~ (3.6) 
j \ r/j / . r/j 
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Define ~i =- ~'i/t/~ and f~ = Z j  6 V~./~,i. Then we obtain 

i ! 

where It/2 = 6o.rl~. We can go to the eigenvasis of the matrix (It/2 + V) to get 

where e~ are the eigenvalues of ([g]2.~ ~r The above equation is a linear 
response equation. It represents the change in the mean field due to a 
change in Vo.. Hence (e~)-i can be interpreted as the susceptibility of the 
eigenmode c~. Thus, when e~ goes to zero, the susceptibility of the 
corresponding eigenmode becomes infinity. 

Let us first consider the case in which we have a periodic lattice of 
cities with one city per unit cell. The mean field solution is 

~/2=~ V~= Vo (3.9) 
J 

and is independent of site. In this case we can diagonalize the mean field 
equation by Fourier transform to obtain 

4k=LL (3.10) 
~k 

where ek = Vo + V(k) and V(k) = ~j  V~ exp(ik �9 Rj). In the periodic case, as 
long as there is frustration, the denominator of the equation can never be 
zero, and all the susceptibilities 1/ek remain finite. Thus, the mean field 
changes by a small amount with disorder. We can linearize about the new 
mean field and add more disorder. The new mean field becomes space 
dependent. The spectrum of the matrix (Ir/2+ V) develops a tail. By con- 
tinuity this situation continues untill the tail grows and touches the origin 
(Fig. 3). When the tail just touches the origin, the susceptibility of the 
corresponding local model diverges. 

This calls for a self-consistant local modification of the tour beyond 
the linear analysis. Once this is done, it is likely to continue as one 
increases the disorder, since in this case both the diagonal and off-diagonal 
elements become disordered. Even though we have not done a detailed 
analysis of the mean field equation, it seems difficult to escape this simple 
possibility. We will call this region a critical region or a region of marginal 
stabiility of the mean field. The proliferation of mean field solutions is 



12 Baskaran, Fu, and Anderson 

Fig. 3. 

0 E 0 

The density of states pl(e) of the matrix (Iq z -  V). The largest susceptibility is eo 1. 

related to the divergence of the localized susceptibility and the finite value 
of the density of states of Iq 2 + V close to the origin. 

This behavior is to be contrasted with the Ising spin-glass. Above the 
spin-glass transition, some of the localized mode susceptibilities diverge. 
This does not alter the mean field. In fact, the mean field remains zero until 
we reach To. In the TSP the mean field changes because the symmetry is 
always spontaneously broken. 

Another instance where we know the exact mean field is at infinite 
temperature. The mean field solution is a constant independent of the city. 
Decreasing the temperature amounts to increasing the disorder. By the 
same argument as above, there is a small modification of the mean field 
until a critical temperature, at which some of the local susceptibilities start 
to diverge. A schematic phase diagram is given in Fig. 4. 

Critical / 

oneritieal 

T 
Fig. 4. Schematic phase diagram in the disorder-temperature plane. 
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From the form of the stability Eq. [(3.7) and (3.8)] it is obvious that 
there are two more possible types of behavior of the mean field. The first is 
that the susceptibilities remain finite at all temperatures and the mean field 
is stable. This is unlikely to be the case in a highly frustrated systems like 
ours. A second possibility is that the susceptibility of one of the extended 
modes diverges at low temperatures. This will be like a conventional "spin- 
glass" type of phase transition. In order for this to happen, the diagonal 
randomness in It/2 and the off-diagonal randomness in the matrix V~ must 
conspire in such a way that all the localized states in the left end of the 
spectrum in Fig. 3 are depleted. This is possible in a spin-glass because the 
interaction matrix is temperature independent and the Hartree correction 
could screen the randomness at low temperatures. In our problem the 
matrix Vii has a strong temperature dependence and the randomness effec- 
tively increases with decreasing temperature. Thus, this possibility looks 
remote. 

Using the above arguments and the known properties of random tight 
binding matrices in two dimensions, we can make the following statements. 
In a two-dimensional TSP the phase progressively changes and enters into 
a critical region where some local mode susceptibilities diverge. At any 
finite temperature no extended mode susceptibility diverges. Absence of 
divergence of an extended mode susceptibility implies the absence of a 
critical point. The recent numerical results of Kirkpatrick and Toulouse (2~ 
also seem to point to a progressive change in the behavior of properties of 
tours rather than an abrupt change. This point needs further detailed study. 

Having found the mean field, one can find the man field free energy 
and the leading correction to it following OID. The mean field can point in 
any direction in the internal n-dimensional space. Thus, we have to 
integrate over these angular variables (global rotation) to get a factor 

S, = 2rcn/2/F(n/2 ) (3.11) 

which is the area of the unit sphere in n dimensions. This becomes ~ n  in 
the limit n--, 0 and cancels the 1In factor in the partition function. 

We can calculate the leading correction to the mean field free energy 
by looking at the Gaussian fluctuation about the mean field. (13) To do this, 
we expand the free energy Eq. (2.6) about the mean field ~bmf= (2/i)1/2q, 
and keep terms quadratic in the fluctuation ~'i to get 

i ( 
--flF=--N+Zlntl~--5~, .. G,j t l } ] ~ )  

2 ~ G; j -  ~ }  + ..- (3.12) 
t j  

v = 2 , . . . , n  
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The first two terms are the mean field free energy. The third term is the 
longitudinal fluctuation term. The last term represents the n -  1 transverse 
fluctuation modes. The inverse propagator matrix of the transverse fluc- 
tuation has a zero eigenvalue by virtue of the mean field Eq. (3.3). This 
represents the n -  1 Goldstone modes in the system. 

The longitudinal propagator matrix in the expression is related to the 
matrix that appears in the linearized mean field equation. Thus, when we 
enter the critical region, the inverse of the longitudinal propagator matrix 
starts getting zero eigenvalues, indicating the marginal stability of the mean 
field solution. 

The Gaussian integration can now be performed to obtain the mean 
field free energy with Gaussian correction, 

( -flFmf=-N+21nq~+ln det G~+qzj[ 
i 

The zero-mode problem arising from the Goldstone modes can be 
taken care of by the Fadeev-Popov method. In the limit n ~ 0 we get 

-/~Fmf = - N  + ~ In t/~ + In det(Gu + 6u/tt~) 1/2 
i d e t ( G u _ ~  (3.14) 

Multiplying the numerator and denominator inside the determinant by Vu, 
we get 

1 det(6u + Vgt/~) (3.15) In + In 
det (c3 u - Vulva) i 

The second term in the above equation contains the effect of 
frustration and randomness. In the Hamilton circuit problem considered by 
OlD there was no frustration and no randomness. The density of states of 
the matrix Vo/q~ was symmetric. This led to the cancellation of the two 
determinants. Thus, the absence of frustration seems to be the basic reason 
for the remarkable accuracy of the mean field result in lower dimensions in 
the Hamilton circuit problem. It will be interesting to study the Hamilton 
circuit problem in regular frustrated lattices in this light. In our problem, 
since there is frustration and randomness, the two determinants do not 
cancel each other. 

The mean field at every city has a simple interpretation. Let the 
frustration and randomness be small. Then the mean field free energy is 
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large compared to the Gaussian correction. At low temperatures, this free 
energy is approximately equal to the mean energy of the system. This is 
nothing but the sum of the distances between consecutive cities in an 
optimal tour. This means that in an optimal tour, with very high 
probability a city at a distance (1/fl)(-1 + In  r/~) from the ith city will be 
chosen in the next step. 

When we have large frustration, the Gaussian fluctuation term com- 
plicates the interpretation. Let the disorder be so large that all the 
eigenstates of the matrices (~50 + Vo/tl 2) and (c5~- Vo/rl~ ) are well localized 
in space, so we can associate one localized state to every city, on which 
that localized state has a maximum overlap. Then the fluctuation term can 
be', approximately written as 

A+ 1 ~ ~+ ~ln  det(6iJ+V~ (3.16) 

where 2 + and 2s are the eigenvalues of the matrices (6ij+ VJ~) and 
(30-VJrls2), and ),~ + and 2~ the eigenvalues of the state cq that has 
maximum overlap with the city i. Thus, 

-l+ln  +gln 

is the distance of the next city that is likely to be chosen in an optimal tour 
at very low temperatures. 

In the above we have presented a possible scenario in a simple mean 
field theory without doing any explicit average. We have assumed that the 
mean field points in the same direction in all the cities. This assumption 
seems to work quite well in the Hamilton circuit problem studied by OlD, 
which has no frustration. The validity of this approximation to the present 
problem with randomness and frustration has to be studied further. 

The mean field that we have chosen is complex. Thus, one has to 
change the contour in the multidimensional integral into the complex 
plane. There may be saddle points that give complex free energies. Since the 
final free energy is real, they have to occur as complex conjugate pairs. 
Such saddle points give rise to very strong N dependence of the free energy, 
such as In cos(bN), where b is some constant. On physical grounds we do 
not expect such saddle points to exist. 

The mean field theory solution has to have nonzero values at every 
site, as is obvious from the mean field equation. This suggests that a 
spatially varying mean field solution (having mean fields with different 
signs at different cities) cannot be continuously deformed into another one 

822/45/1-2-2 
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in which the mean fields at some cities have changed signs as the 
parameters of the problem are changed. This is possible only if we make 
the mean field orientation space dependent. 

From the above analysis one expects the number of mean field 
solutions to proliferate once we enter the critical region. It should be poin- 
ted out that the number of mean field solutions is not directly related the 
number of optimal tours. For  example, when we are at a very high tem- 
perature, where the ferromagnetic solution is a good mean field solution, 
and where the value of the mean field is approximately//-d/z,  any tour in 
which the nearest neighbor jumps are of the order of fl-1 is an optimal 
tour. In general, each mean field solution describes a class of optimal tours. 

It will be interesting to test numerically or analytically the multiplicity 
of the mean field solutions at low temperatures. Another useful analysis will 
be to perform detailed analysis of the mean field equation, including the 
Onsager type of reaction field correction to get a TAP-type equation316) 

3.1. Spontaneous Symmetry  Breaking at All Temperatures 

We observed from Eq. (3.5) that the mean field value cannot be zero 
at any city. This means that there is spontaneous symmetry breaking at 
any finite temperature. This need not be a consequence of the man field 
approximation, if we use the following argument. Let us assume that there 
is a paramagnetic phase. Then the high-temperature Boltzmann factor is 
effectively (in the sense of renormalization group) a product of Gaussian 
factors corresponding to the independent normal modes. This integration 
can be performed to get 

1 (det A) ~/2 
Z,  ~ b (3.17) 

n 1 
and 

Z n ~ o e  as n ~ 0  (3.18) 

where det A arises from the independent normal modes and b is a constant 
independent of n. The constant b arises from the integration over the short- 
wavelength fluctuations. It is unlikely that this term will be proportional to 
n to cancel the n in the denominator. Thus, even when corrections are 
made to the mean field theory, the spontaneous symmetry breaking is 
likely to survive. 

3.2. Quenched Average 

In the field theory representation there are some difficulties in perfor- 
ming the quenched average in a replica method. This is related to the fact 
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tihat the random variables, namely the distances between pairs of cities, 
appear in a strange place in the partition function. Even if we assume that 
the cities are randomly distributed in a volume without any correlation, the 
averaging operation with respect to the position of the cities after introduc- 
ing the replica is still more difficult than the classical statistical mechanics 
of particles interacting through repulsive exponential interaction. 

We have attempted a quenched average based on the following 
argument. The matrix Gij is the lattice propagator at zero energy. In a ran- 
dom system the average of this is known to decay exponentially and also 
exhibits rapid spatial oscillations. Thus, we may model G~ by a Gaussian 
random variable. A detailed analysis shows that this leads to serious 
divergences. This arises due to the fact that with the above probability dis- 
tribution, some of the G,j become arbitrarily small with finite probability, 
leading to violent fluctuations in ~b's. This leads to divergence, because our 
partition function, Eq. (2.4), is a complicated higher order moment of a 
Gaussian distribution. 

In the Appendix we will see that the quenched averaging can be 
explicitly performed in a replica treatment of the problem if one makes cer- 
tain assumptions about the distribution of the intercity distances. 

4. DISCUSSIONS 

In this paper we have provided a simple analytical treatment of the 
statistical mechanics of the TSP. We have provided two representations of 
the problem, following recent work of Orlando et al. ('3~ and Hopfield and 
Tank.(17) 

The first representation has several interesting features. First, we have 
obtained a very simple and nontrivial mean field equation. A stability 
analysis of the mean field equation suggests that at low temperatures the 
mean field may undergo drastic changes as we decrease the temperature. 
This is due to the divergence of some localized mode susceptibilities. This 
also points to the possibility of the proliferation of the mean field solutions. 
We have also given a simple interpretation to the man field solution. Since 
the man field equation is for a given random configuration of the cities, it 
may prove useful to specific optimization problems. It will be interesting to 
see how close the tours constructed from the solutions of our mean field 
equation are to the best optimal solutions obtained by other means (say, 
by simulated annealing). 

It is interesting to note that, as in the spin-glass problem, the 
localization property of tigh binding random matrices enters our mean field 
theory. This brings out the role played by frustration. The role played by 
dimensionality is also brought out in our mean field theory through the 
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random matrices. The appearance of random matrices and their 
localization properties may be generic to a class of optimization problems. 

Dimensionality plays a crucial role in phase transition problems in 
general. The TSP conventionally defined is on a two-dimensional place. 
Thus, the statistical mechanical problem is two dimensional. A one-dimen- 
sional TSP has a trivial solution. Our mean field analysis shows that there 
is no possibility of extended mode susceptibility divergence in the two- 
dimensional TSP. This may imply the absence of any conventional phase 
transition. It is, however, possible to have a phase transition with 
proliferation of mean field solutions at low temperatures, with nontrivial 
overlap properties between the mean field solutions. Since the range of the 
matrix V~j becomes shorter and shorter as we go to low temperatures, the 
detailed low-temperature properties of the problem may strongly depend 
on dimensionality. The nonmetric model discussed by Vannimenus and 
M6zard (4) and also by us in Section 4 can be thought of as an infinite- 
dimensional model. 

There are certain difficulties associated with introducing the replica 
method and doing explicit quenched averaging in the first representation. 
Other types of difficulties arise in studying mean field solutions that change 
in direction from city to city in the internal space. Even if one can find such 
a solution for a finite n, it is not clear how to analytically continue such a 
solution to the n ~ 0 limit. 

In the permutation group representation discussed in the Appendix, 
we have performed the quenched average explicitly for a nonmetric model. 
The anomalously large low-temperature entropy is clearly brought out in 
this representation. If one succeeds in calculating various overlaps, it will 
probably be through this representation. The partition function of an 
optimization problem is in general an average over the appropriate per- 
mutation group. Hence, the permutation group representation may find use 
in several other combinatorial optimization problems. 

As a general practice it may be useful to search for several represen- 
tations in any combinatorial optimization problem. Each representation 
may bring out different special features of the problem. In polymer 
problems, which are closely related to TSP, a useful representation is 
available in terms of the Grassman variables. Fu and co-workers (2m have 
developed representations in terms of the Grassman variables of MTSP 
and TSP. 

After this paper was written we came across an interesting paper by 
OrlandJ 2~) He gives a representation of the TSP whose origin is identical 
to ours, but the details are different. However, the discussion is concen- 
trated on another combinatoric optimization problem, the bipartite 
matching problem. 
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APPENDIX. A PERMUTATION GROUP REPRESENTATION 

The introduction of permutation group elements as "spin" variables is 
similar to a representation introduced by Hopfield and Tank. (17) In this 
representation we are able to perform explicit quenched averages for a 
model distribution of distances between the cities. The resulting quenched 
partition function is quite complex. We introduce an Edwards-Anderson 
type of order parameter and make a simple Ansatz for the equilibrium 
value of the order parameter. The resulting free energy is not extensive at 
low temperatures. Our analysis points out that the Ansatz used is not 
correct and that the problem is more complicated than the finite-range 
spin-glass problem. 

Hopfield and Tank studied the TSP using their neuron system, in 
which N 2 neurons are used. Each neuron can be in one of two states, which 
we will call up and down. These neurons are placed in an N by N array. A 
tour is uniquely coded by a set of N up-neurons with one and only one up- 
neuron per row and per column in such a way that the (0)th neuron is up 
if and only if the ith stop along the tour is at city j. To ensure that no more 
than one city is visited at the same time and that every city is visited once, 
four penalty functions are used. This approach produced interesting result, 
butt is hopelessly cumbersome for theoretical discussions. In fact, since there 
are about N! different tours and 

2 N2 >~ N!  >2 > 2 N (A1) 

~t is obvious that Ising spin-like variables are not convenient for describing 
different tours; N 2 Ising spins will be far too many, while N spins will not 
be nearly enough. 

Inspired by Hopfield and Tank, we use a matrix V to describe different 
tours  V is an N by N matrix, with one and only one 1 per each row and 
colunm; the rest of the matrix elements are zero. A given tour is uniquely 
specified by such a matrix in the following way: 

1 if the ith stop is at city j 
V,~ = (A2) 

0 otherwise 

We define V N +  l,i ~- Vl,i to have the trip end at its starting point. For  exam- 
ple, if N =  6, the tour 

1 ~ 3 ~ 4 ~ 6 ~ 5 ~ 2 ~ 1  
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is specified by 

V= 

1 0 0 0 0 0"  

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 1 0 0 0 0., 

The V's form a faithful representation of the permutation group S N. 

Its N! elements are in one-to-one correspondence with all possible tours. It 
is natural to use the elements of the permutation group as the dynamical 
variables for a combinatorie optimization problem. 

One can verify that this representation of the permutation group is 
unitary. The unitarity follows from the way V is defined, 

N 
(Vv) jk  = Z v,j vik -- (A3) 

i= l  

The N cities are assumed to be distributed randomly. Here we shall 
choose the elements of the distance matrix d o to be Gaussian random 
variables centered at zero: 

[do]av=O, [ d } ] a v = D  2 (A4)  

Notice that there is nothing wrong in allowing a negative distance. The 
shortest tour (which typically will have a negative total length) is still well 
defined, and still hard to find. The problem has not been modified in any 
essential way. If one insists on having a positive distance, one can always 
add a constant a>>D to each d 0 so that the probability of having a 
negative distance is negligibly small. The total length of the tour is 

L = Na + ~ dr (A5) 

The nontrivial part is still given by the distance matrix with zero mean. All 
these random variables are assumed to be independent, subject only to the 
conditions 

dj = dji , dii = 0 (A6)  

This implies that the space is no longer geometrical. In general the 
triangular inequality does not hold. We have tranformed a problem with 
site randomness into one of "bond randomness." This is similar to describ- 
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ing spin-glasses with randomly located magnetic impurities by the 
Edwards-Anderson model. 

We can now formulate the TSP as a statistical mechanical problem. 
The cost function is 

L= ~ Vodj~V~+l,k=tr(V'd" V~A) (A7) 
i,j,k 

where 

Introducing replicas, we have 

A o = 6,j+ j (AS) 

f12D2 N 
[ Z ' ] a v = T r e x p - - ~  ~ • [(VaV~b)it(VaV~b)i+l,t+' 

arab i,l-- I 

+ (Va V~)i,~+ ,(V, V~b(i + ~,,] (A9) 

where we have used Eq. (A6). In Eq. (A9) Tr stands for the summation 
over the group elements of each of the n copies of the permutation group 
Sx. We will use tr for the trace of an ordinary matrix. Since Va and 
~bb =: Vb 1 are both elements of Su, so is T"b= Vo ~ ,  and 

[Z ]av=Trexp 2D2 ~ ~ tT.bTae,_i/ --i+l,t+l +Ti, t+lTi+lj 
L- a<b i,l 

=Trexp  f12D2 ~ ~ ~ ~,k,~,~,ijk,j (A10) 
2 a < b i,j,k,l 

In (AIO) 
M i j k t = ( ( S i ,  k + l  +(Si,  k _ l ) ( ( S j j + l  + S j , ~ _ l ) = [ m @ m ] q ,  kl (All)  

and m is a nearest neighbor hopping matrix 

mij = 6i , j+ 1 ~- 6i, j -  1 (A12) 

The T's are not independent matrices, since 

TOOT b" = V, V~' Ve V;' = T"" (h13) 

This type of correlation is expected, since we have constructed n(n-1)/2 
T's from n V's. 

Introducing a set of auxiliary variables Q, we can write Eq. (A10) as 

f I 1 i..)abtl/[1 ~ oabTa, b DQabexp 2f12D2 E E Q~b~k,*'*0kzjTrexp E E~,)-- ,a 
a<b  i,j,k,l a<b i,j 

(A14) 
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where 

dQ ab 
DQ ab= 1-1 flD(21~)1/2 (A15)  

a<b 

This expression is exact. As a first step toward solving the problem, we 
shall use the mean field approximation. It is clear that at high temperature 
the entropy term will be of the order of N In N. On the other hand, the 
expected tour length at high temperature as a sum of N random variables is 

L ~  -- x/-N D (A16) 

In order to have an energy term with an N dependence comparable to that 
of the entropy part, we need to scale D in such a way that 

D = N ~/2 Do(N) (A17) 

with Do(N)~ In N. We will decide on a form for Do(N) from our final 
result for the free energy. Note that the estimate of (A16) is rough, and 
does not by itself imply that this problem is always dominated by the 
entropy term, with a possible transition at zero temperature (To ~ 1/ln N) 
into a low-temperature phase dominated by the energy part. A more 
careful treatment is needed. 

Now we can try to construct a mean field theory solution. We assume 
that the integral in (A14) is dominated by the contribution coming from a 
saddle point 

Q~b_ ~b (A18) ij - q u  

Lacking further insight into the problem, we shall try various Ans~itze. In 
the high-temperature phase we expect no replica symmetry breaking. We 
also assume the mean field theory order parameter to be homogeneous in 
real space and to have no variation from site to site. This restricts the 
choice to either 

q~b=q (A19) 

or  

q~b = q6ij (A20) 

Equation (A19) does not lead to any sensible result. Since T ab has the 
same form as V, 

T~ b = N (A21) 
ij 



Statistical Mechanics of the Traveling Salesman Problem 23 

independent of the group element. The trace part of (A14) 
calculated exactly. Using 

can be 

)-7 Mo.k~ = mo. 1 = m(/ = (N/2) 2 (A22) 
ijkl 

we have that the free energy F is given by 

fl F q2 q 
N -  ( l n N - 1 )  16f12DZ(N)+2 (A23) 

It can be easily shown that no simple N dependence in Do(N) can remove 
the In N term in the above free energy. 

The second Ansatz (A20), is more promising, since it couples to 

tr T ub = tr(V~ ~ )  (A24) 

which is the overlap between two tours. Experience from the study of spin- 
glass models strongly suggests that this is the correct order parameter. 
Unfortunately, it does not work either. Using 

we have 

6~jaktM~ = tr(m -2) = N2/7~ (A25) 
ijkl 

-~= 4rrfl2D2(N) ~ - ~  - l + T r e x p  q ~ t r T  ~h (A26) 
\ a < b  

The second term within the square brackets is hard to calculate in general, 
but we can expand it for small q, a good approximation for high tem- 
peratures and the transition region. The result is disappointing. None of 
the', terms containing q is extensive. Also, no simple temperature-indepen- 
dent choice of Do(N) removes the nonextensive terms. This is also true if 
we choose qo to be a cyclic matrix, or any other element of the represen- 
tat:ion of SN, by a well-known theorem of group theory. 

Major difficulties include: 

1. The anomalously large entropy. In the mean field theory described 
above with two simple Ans/itze for the order parameters, the large entropy 
survives at every temperature. The system is always in the high-tem- 
perature phase. For finite systems, this is not a serious problem. If we let 
the temperature go to zero, the partition function still projects out the low- 
lying states. But for finite systems an annealed average is not much dif- 
ferent from a quenched average, and it is not clear how the replica method 
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can  be used to study the overlap between states in that case. Either this is a 
peculiar feature of the nonmetrical model (recall that the large entropy 
problem is not there in the metric model, as we discussed at the beginning 
of this paper), or it may be an artifact of our aproximation and the choice 
of the order parameters. 

2. The proper choice of order parameters. Gross (~8) has made the 
following observation, which indicates very clearly why the TSP may be 
much harder to solve than the spin-glass problem, and why a naive treat- 
ment of the problem (such as the one we just gave) is unlikely to succeed. 
Unlike spin-glasses, for which the two-state overlap contains all the infor- 
mation, in TSP one may have to consider higher order overlaps. In the 
high-temperature phase of spin-glasses, the overlap between any two states 
is of the order of 1. This overlap becomes of order N below the transition 
temperature. On the other hand, in the low-temperature phase of the TSP, 
three-, four, and in general p-tour overlaps will all be of the order of N, 
where p is some finite number. This can be seen from the existence of many 
common links in different short tours generated on the computer. It seems 
that one needs more order parameters [say, p functions q~(x), 
q2(x),..., qp(X)] to describe the transition (or transitions). It is not clear 
how to study such a problem. 

There is a valid lesson that that one can learn from our discussion of 
the TSP in this paper. Using the representation of a permutation group to 
describe different configurations can make the problem free of uncon- 
trollable penalty functions, and may thus be important for all com- 
binatorial optimization problems. The partition function of an optimization 
problem is always an average over the appropriate permutation group. 
Future development of the relevant mathematical techniques will be 
welcome. 

Kirkpatrick and Toulouse (2~ have found evidence for ultrametricity 
and high-order overlaps. The Traveling Salesman Problem may well belong 
to a new category of complex systems, one different from that of spin- 
glasses, and needs as its order parameter not a function q(x) or the 
probability law associated with that function, but a family (finite or 
infinite) of functions and their corresponding probability laws. 
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